UNIVERSAL BASIC INCOME: INSPECTING THE MECHANISMS

Nir Jaimovich (UCSD, CEPR) Itay Saporta-Eksten (TAU, CEPR & IZA) Ofer Setty (TAU & PeRCent) Yaniv Yedid-Levi (IDC Herzliya)

> University of Copenhagen January 17, 2024

OVERVIEW

- UBI is heavily debated in policy circles and across media outlets
 - e.g., Andrew Yang's signature policy in his presidency campaign (2020)
- It provides a safety net for everyone:
 - potentially less distortions than classical welfare,
 - ▶ but very costly ⇒ requires dramatic changes to taxation
- The case of Denmark:
 - The cost is already there
 - But should they do it?
- Back to the US:
 - Are means test benefits the jack pot we're looking for?

MOTIVATION

Many small scale programs provide insights on cash-assistance benefits

MOTIVATION

MOTIVATION

- Similar knowski kno Knowski kn
- Many small scale programs provide insights on cash-assistance benefits

- Lack of aggregate level and long-term commitment limit discussion on:
 - How UBI could be funded and what are the macro implications?
 - How would UBI interact with other sources of government assistance?
 - How the costs and benefits would stack up?

IN THIS PAPER

- Goal: underscore qualitatively and quantitatively the key mechanisms through which UBI affects the economy
- A rich model to study many UBI programs and financing schemes:
 - Cost: labor force participation, demand for capital and unemployment
 - Insurance role: incomplete markets with self-insurance, individual productivity & employment shocks
 - Policy side: labor & capital income distortionary taxation, as well as social insurance programs
- Three alternative implementations:
 - Keep progressivity and social assistance fixed
 - Alternative funding: change progressivity
 - Alternative design: partially phase out social assistance

THE KEY TAKEAWAYS

Holding progressivity and social assistance fixed:

- A large decline in labor force participation, capital, and output
- Three main channels:
 - 1. Increased taxation lowers labor force participation (substitution)
 - 2. Reduced demand for self insurance decreases capital (insurance)
 - 3. The grant lowers labor force entry (income)
- Also lowers inequality but not enough to offset the cost

Alternative funding - change progressivity:

UBI can only be justified as an alternative to progressive taxation

Alternative design - partially phase out social assistance:

A modest level of UBI increases labor force and can be welfare enhancing

- Heterogeneous agents and Public Policy: Krusell, Mukoyama, and Sahin (2010), Holter, Krueger and Stepanchuk (2019), Setty, and Yaniv Yedid-Levi (2020)
- Empirical UBI: Hsieh (2003), Akee et al. (2010, 2013, 2018), Kueng (2018), Jones and Marinescu (2022) + Many local policy reports
- The Macroeconomics of UBI: Daruich and Fernandez (2023), Guner,
 Kaygusuz and Ventura (2023), Conesa, Li and Li (2023), Luduvice (2019)

Also: Hoynes and Rothstein (2019) and Van Parijs and Vanderborght (2017)

- Model
- Calibration and model fit
- Results
 - Keeping progressivity and social assistance fixed
 - Alternative funding: change progressivity
 - Alternative design: partially phase out social assistance

Model

KEY INGREDIENTS

- Model set up:
 - Heterogeneous-agents, incomplete markets model with search-and-matching as in the spirit of Krusell, Mukoyama and Sahin (2010)
 - Plus productivity shocks, similar to Setty and Yedid-Levi (2020)
 - Plus endogenous labor force participation
- Government:
 - Funds payments to workers outside the labor force, unemployment benefits, government expenditures, and UBI
 - Taxes labor and capital income
- General equilibrium endogenous variables: assets' return rate, assets' distribution, wages, and job-finding rate
- Steady state comparison (plus transition for one case)

WITHIN THE LABOR FORCE

- Workers who participate in the labor force are employed/unemployed
- Firms maintain vacancies v that cost ξ per vacancy
- All unemployed workers (u) search for work
- A constant-returns-to-scale matching function $\chi \times M(v, u)$
- Define market tightness as: $\theta = \frac{v}{\mu}$, accordingly:
 - Job-finding probability $\lambda^{w}(\theta)$ (Strictly increasing)
 - Vacancy-filling probability $\lambda^{f}(\theta)$ (Strictly decreasing)
- Matches separate at a constant and exogenous probability s each period
- Everyone exit with probability ϕ

PRODUCTIVITY AND PRODUCTION

Workers

Individuals draw persistent productivity p according to:

$$\log(p_t) = \rho \log(p_{t-1}) + \epsilon_{p,t},$$

where $\epsilon_{p,t}$ is i.i.d., mean zero, s.d. σ_{ϵ_p}

Workers keep p upon unemployment, and re-draw upon re-employment

Firms

- Produce an identical good
- Rent capital k(p), pay wage w
- Produce using a standard (per worker) production function:

$$p \times f(k(p)), \quad f' > 0, f'' < 0$$

- Two assets: capital (k) and claims on firms' aggregate profits (equity: x)
- No arbitrage implies the same return $(1 + r \delta = \frac{d+\pi}{\pi})$, where:
 - d is dividends
 - π price of equity
 - r rental rate of capital
 - δ depreciation rate
- Indifferent between k and $x \rightarrow$ define total assets a as the worker's state .

GOVERNMENT TRANSFERS AND TAXES

- Government transfers and expenditures:
 - Social assistance for those outside the labor force (b^{NLF})
 - Unemployment insurance (replacement rate h, capped at κ)
 - Government expenditure (G, fixed)
 - Universal basic income (UBI)
- Financed through:
 - Progressive labor taxation, with tax rate : $t_l(y_l) = 1 \lambda_l (y_l/\bar{y}_l)^{-\tau_l}$
 - *y_l*: income (wage or unemployment benefits)
 - \bar{y}_l : average income
 - $1 \lambda_l$: tax rate levied on average income
 - τ_l : progressivity level ($\tau_l = 0$ is a flat tax rate)

Note: this specification allows for Earned Income Tax Credit (EITC)

- Flat tax rate on capital income t_a
- Balanced budget

DECISIONS 1/5: LABOR FORCE PARTICIPATION

- Workers are born outside the labor force with utility cost $\Gamma \sim \mathcal{N}(\mu_{\Gamma}, \sigma_{\Gamma}^2)$
- If enters the labor force:
 - Pays the utility cost Γ
 - Starts unemployed and with the lowest productivity p
- If stays outside the labor force:
 - Receives periodic social assistance (b^{NLF}) plus UBI
 - No assets' accumulation (for simplicity)
 - This yields the value $V^{NLF} = \frac{u(b^{NLF} + UBI)}{1 \beta(1 \phi)}$
- Entry decision is thus: max{V^{NLF}, U(0, <u>p</u>) − Γ}

 \Rightarrow a cutoff cost $\Gamma^{*},$ s.t. $\Gamma < \Gamma^{*}$ enters the labor force

DECISIONS 2/5: EMPLOYED WORKER'S CONSUMPTION-SAVINGS

$$W(a, p) = \max_{c, a'} \{ u(c) + \beta(1 - \phi) [sU(a', p) + (1 - s) \mathbb{E} [W(a', p')]] \}$$

s.t. :
$$c + qa' = w(a, p) (1 - t_l (w(a, p))) + a (1 - t_a \times (1 - q)) + UBL$$

$$a' \ge 0$$

where:

- a' denotes the optimal policy for assets
- $q \equiv rac{1-\phi}{1+r-\delta}$ denotes 1/gross return
- (1-q) a is flow asset income

$$U(a, p) = \max_{c, a'} \left\{ u(c) + \beta(1 - \phi) \left[(1 - \lambda^{w}) U(a', p) + \lambda^{w} \mathbb{E} \left[W(a', p') \right] \right] \right\}$$

s.t. :
$$c + qa' = b(p) (1 - t_{l} (b(p))) + a (1 - t_{a} \times (1 - q)) + UBI$$

$$a' \ge 0$$

where:

•
$$b(p) = \min\{h\overline{w}(p),\kappa\}$$

DECISIONS 4-5/5: FIRMS' VACANCIES AND CAPITAL

A large number of firms post vacancies with a value:

$$V = -\xi + q \left[(1 - \lambda^{f}) V + \lambda^{f} (1 - \phi) \mathbb{E} \left[J(a', p') \right] + \lambda^{f} \phi V \right],$$

- With free entry, in equilibrium, firms post new vacancies until V = 0
- A filled job with a worker with assets *a*, and productivity *p* has the value:

$$J(a, p) = \max_{k(p)} \{ pf(k(p)) - rk(p) - w(a, p) + q(1-\phi) [sV + (1-s)\mathbb{E} [J(a', p')]] + q\phi V \}$$

- Wages are determined by Nash bargaining.
- ▶ Solution is a set of wage functions $w_i(a, p)$ that solve:

$$\max_{w(a,p)} \left(W(a,p) - U(a,p)
ight)^{\gamma} \left(J(a,p) - V
ight)^{1-\gamma}$$
 ,

where $\gamma \in (0, 1)$ is workers' bargaining power

Full equilibrium specification

CALIBRATION AND MODEL FIT

CALIBRATION

- Calibrate key labor market parameters to match data from the CPS and ASEC 2000-2019
- Main sample restricted to ages 18-65 excluding armed forces
- Exclude three groups not in the labor force, which are unmodeled:
 - Students (everyone outside the labor force under 25)
 - Retirees below the age of 65
 - Married not in the labor force, not receiving social assistance
- The high labor force participation implied by this sample (0.9) choice mitigates the costs associated with the UBI (b/c implies a low dependency ratio)

CALIBRATION OF BENCHMARK ECONOMY

	. 1	
period	month	
u(c)	$\log(c)$	
β	0.9965	match interest rate (3.1% annual)
μ_{Λ}	-68.51	match the labor force (0.9)
σ_{Λ}	171.51	match elasticity of NLF w.r.t. social assistance (0.3)
ϕ	0.00029	social security data on death probability
α	0.3	$f(k) = k^{lpha}$
δ	0.007	investment/output ratio 0.23
M(u, v)	$\chi(u)^{\eta}v^{1-\eta}$	
x	0.362	benchmark job finding rate 36.2%
η	0.6	Petrongolo and Pissarides (2001)
,		Brugemann (2008)
γ	0.6	- 、 ,
S	0.022	match unemployment rate of 5.8%

CALIBRATION OF BENCHMARK ECONOMY

POLICY PARAMETERS

	λ_I	0.90	Holter, Krueger, and Stepanchuk (2019)
	$ au_l$	0.15	Holter, Krueger, and Stepanchuk (2019)
	ta	0.36	Trabandt and Uhlig (2011)
	b ^{NLF}	0.90	Match ratio of social assistance to average wage, ASEC (0.17) $$
	h	0.4	replacement rate
	κ	1.83	average benefits are 60% of median wage
_			

MODEL FIT - WEALTH DISTRIBUTION

- The model reasonably accounts for key wealth-distribution moments
- Especially the bottom Lower two quintiles, who benefit the most of UBI

	Data	Model		
% share owned by				
Q1	-0.2	< 0.05		
Q2	1.2	1.5		
Q3	4.6	7.4		
Q4	11.9	21.5		
Q5	82.5	69.5		
Gini	0.78	0.68		

MODEL FIT - EMPIRICAL MICRO EVIDENCE

- Use the Alaska Permanent Fund Dividend as external validation:
 - Starting 1982, Alaskans get yearly dividend payment from the fund
 - As UBI: universal, unconditional, permanent but not funded by taxes
- Jones and Marinescu (2022) find a decline of less then 1 p.p in full time equivalent labor supply (accounting for part-time work effect)
- Keeping taxes constant in our model, gives ~ 0.5 p.p decline in employment

Results I: Inspecting the mechanisms:

PROGRESSIVITY AND SOCIAL ASSISTANCE UNCHANGED

- Solve for multiple levels of UBI (0 to 10% of baseline GDP per capita)
- Finance UBI by shifting the tax function $(\lambda_I \downarrow)$, holding tax progressivity (τ_I) constant:

$$t_{I}(y_{I}) = 1 - \lambda_{I} \left(\frac{y_{I}}{\bar{y}_{I}}\right)^{-\tau_{I}}$$

- Calculate the steady state equilibrium allocations and prices
 - Present results in deviations from the benchmark economy

GDP FALLS DRAMATICALLY WITH UBI

1. UBI is Expensive:

Labor tax rate pushes workers outside the labor force (substitution)

1. UBI is Expensive:

Labor tax rate pushes workers outside the labor force (substitution)

2. UBI provides public insurance :

Less demand for insurance reduces aggregate capital (insurance)

3. Positive income effect:

More people stay outside of the labor force (income)

COST BREAKDOWN: IMPORTANCE OF THE SUBSTITUTION CHANNEL

- How important is the substitution (high taxes) effect?
- Back to the Alaska experiment holding taxes constant

• Taxes explain $\sim 2/3$ of the impact

Cost breakdown: insurance and income effects

CAPITAL VS LABOR FORCE DECLINE: CAUSES AND IMPLICATIONS

- Substitution (taxes) and income channels decrease labor force participation
- Through capital-labor complementarity reduces aggregate capital
 - But not per worker capital
- In contrast, insurance effect lowers capital per worker & productivity
 - Leading to lower wages and (slightly) higher unemployment

WELFARE

RESULTS II: ALTERNATIVE FUNDING:

CHANGING PROGRESSIVE TAXATION

- Distortionary taxation accounts for most of output's decline
- Repeat the previous exercise for different tax progressivity schemes:
 - Increase (more progressivity) or decrease (less progressivity) τ_l:

$$t_l(y_l) = 1 - \lambda_l \left(\frac{y_l}{\bar{y}_l}\right)^{-\tau}$$

- Two channels to keep in mind when progressivity increases:
 - A stronger incentive to participate in the labor force
 - Lower need for insurance, further lowering the demand for capital

PROGRESSIVITY LEVELS AT WORK

HIGHER PROGRESSIVITY MITIGATES THE UBI EFFECT

- Most of the effect is through labor force
- Aggregate capital is effected by labor force vs. insurance
- High progressivity could have larger impact through EITC

PROGRESSIVITY MATTERS FOR WELFARE

UBI can only be justified as an alternative to progressive taxation

RESULTS III: ALTERNATIVE DESIGN:

PHASING OUT SOME SOCIAL ASSISTANCE PROGRAMS

SUBSTITUTING OTHER PROGRAMS BY UBI

- UBI substitute only "welfare oriented" programs (about a 1/3 of b^{NLF})
- In practice:
 - People outside the labor force always get at least b^{NLF}.
 - Receive no UBI as long as $UBI \leq \frac{1}{3}b^{NLF}$.
 - From that point onward the transfer increases 1-1 with UBI.

UBI INCREASES LABOR FORCE PARTICIPATION

Moderate levels of UBI can increase welfare

For moderate levels of UBI:

Increased Resources + Increased Insurance = Higher Welfare

WELFARE IMPLICATIONS WITH TRANSITION DYNAMICS

- We calculate the full transition dynamics for a specific case where UBI provides the highest steady-state welfare:
 - ▶ 5.3% of baseline GDP per capita.
 - Roughly \$340 monthly.
- Welfare with transition dynamics still large, but somewhat smaller compared to the steady-state calculation:
 - While labor force increases immediately, average worker productivity is pulled down due to entrance at low-productivity levels.
 - Capital per worker declines immediately due to the insurance effect.

Transition dynamics

CONCLUSIONS

- We put together a rich model to study key channels of UBI
- Keeping progressivity and social assistance fixed, UBI sharply decreases labor force participation, capital and output, through:
 - 1. A substitution effect (high taxes)
 - 2. An insurance effect (lower demand for assets)
 - 3. An income effect (prefer staying outside the labor force)
- Changing Progressive Taxation can only justify UBI as a substitute for redistribution
- Partially substituting welfare with UBI increases participation and can justify a modest level of UBI

BACKUP

STATIONARY EQUILIBRIUM I

A stationary equilibrium consists of:

- 1. A set of value functions $\{W(a, p), U(a, p), J(a, p), V^{NLF}, V\}$
- Consumption c^e(a, p) and c^u(a, p) for employed and unemployed workers, respectively, as well as asset accumulation policy functions g^e(a, p) and g^u(a, p)
- 3. A disutility cutoff Γ^*
- 4. Prices {*r*,*w*(*a*, *p*),*π*}
- 5. Vacancy level v and demand for capital per worker k(p)
- 6. Tightness ratio θ and implied probabilities λ^w and λ^f
- 7. A government policy consists of: tax on labor income t_l(y_l) and a flat tax on financial income t_a; transfers b^{NLF} for individuals out of the labor force; lump sum transfers UBI; A government expenditure G; a UI policy of replacement rate h and a ceiling on benefits κ
- 8. Dividends d

STATIONARY EQUILIBRIUM II

9. Distributions over employment status (either *e* or *u*), assets *a* and individual productivity *p*, denoted by $\mu^{e}(a, p)$ and $\mu^{u}(a, p)$, as well as a measure of individuals outside the labor market μ^{NLF}

such that:

- 1. Given the job finding probability λ^w , the wage function, and prices $\{r, \pi\}$, the worker's choices of *c* and *a*' solve the optimization problem for each individual. This results in the value functions W(a, p), and U(a, p).
- Given the value of staying outside of the labor force, and the value of entering the labor force U(0,<u>p</u>), Γ* is the threshold utility cost of joining the labor force.
- Given the wage functions, prices, the distribution µ^e(a, p), and the workers asset accumulation decisions, each firm solves the optimal choice of k(p). This results in J(a, p).
- 4. Given the wage functions, prices, the distribution $\mu^{u}(a, p)$, the unemployed workers asset accumulation decisions, and the job filling probability λ^{f} , firms compute the value V. With free entry, V = 0.
- 5. The asset market clears, and the aggregate demand for capital equals supply.
- 6. The wage functions w(a, p) are determined by Nash bargaining.

7. The government has a balanced budget.

$$\sum_{a} \sum_{p} \left[\mu^{e}(a,p) \left(w(a,p)t_{l}\left(w(a,p)\right) + at_{a}(1-q) \right) + \mu^{u}(a,p) \left(b(p)t_{l}\left(b(p)\right) + at_{a}(1-q) \right) \right] \\ = \sum_{a} \sum_{p} \left[\mu^{u}(a,p)b(p) \right] + G + \mu^{NLF} \left[b^{NLF} + max(UBI - \overline{UBI}, 0) \right] + (1 - \mu^{NLF})UBI$$
(1)

 The dividend paid to equity owners every period is the sum of flow profits from all matches, net of the expenditure on vacancies.¹

$$d = \sum_{a} \sum_{p} \left[\left(pf(k(p)) - rk(p) - w(a, p) \right) \mu^{e}(a, p) \right] - \xi v$$
(2)

STATIONARY EQUILIBRIUM V

The distributions μ^e(a, p) and μ^u(a, p) are invariant and generated by {λ^w, s, φ}, the law of motion for individual productivity and the asset accumulation policy functions as follows:

$$\begin{split} \mu^{e}(a',p') &= (1-\phi)\{(1-s)\sum_{a}\sum_{p}\mu^{e}(a,p)\times Pr(p'|p)\times 1\{g^{e}(a,p)=a'\} \\ &+\lambda^{w}\sum_{a}\sum_{p}\mu^{u}(a,p)\times Pr(p'|p)\times 1\{g^{u}(a,p)=a'\}\} \\ \mu^{u}(a',p') &= (1-\phi)\{s\sum_{a}\mu^{e}(a,p')\times 1\{g^{e}(a,p')=a'\} \\ &+(1-\lambda^{w})\sum_{a}\mu^{u}(a,p')\times 1\{g^{u}(a,p')=a'\}\}+\phi\times Pr(p)\times 1\{a'=0\} \end{split}$$

$$1 = \sum_{a} \sum_{p} (\mu^{e}(a, p) + \mu^{u}(a, p)) + \mu^{NLF}$$

Back

- We focus on steady state comparisons.
- For each policy:
 - 1. Compute the value from consumption in the steady state.
 - 2. Compute the stock of disutility due to the participation cost.
 - 3. Add (1) and (2).
 - 4. Derive the equivalent consumption.
- Compare the consumption equivalent measures across steady states.

back

"...three features to define a UBI:

- 1. It provides a sufficiently generous cash benefit to live on, without other earnings.
- 2. It does not phase out or phases out only slowly as earnings rise.
- 3. It is available to a large proportion of the population, rather than

being targeted to a particular subset (e.g., single mothers)." (Hoynes and Rothstein, ARE, 2019, pp. 930)

TRANSITION DYNAMICS

TRANSITION DYNAMICS - WINNERS AND LOSERS

SUBSTITUTING OTHER PROGRAMS BY UBI

- UBI substitute only "welfare oriented" programs (about a 1/3 of b^{NLF})
- In practice:
 - People outside the labor force always get at least b^{NLF}
 - Receive no UBI as long as $UBI \leq \frac{1}{3}b^{NLF}$.
 - From that point onward the transfer increases 1-1 with UBI
- Formally:

$$c_{NLF} = y_{NLF} = \begin{cases} b^{NLF} & \text{if } UBI < \overline{UBI} \\ b^{NLF} + UBI - \overline{UBI} & \text{if } UBI > \overline{UBI} \end{cases}$$

COST BREAKDOWN: INSURANCE AND INCOME EFFECTS

... STILL THE ALASKA EXPERIMENT - HOLDING TAXES CONSTANT

- Income effect only affects total capital (CRS production)
- Remaining (per worker) effect is due to lower demand for savings

Within Alaska experiment insurance effect accounts for 2/3 of capital drop